Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Projection-Free Online Convex Optimization via Efficient Newton Iterations (2306.11121v1)

Published 19 Jun 2023 in math.OC and cs.LG

Abstract: This paper presents new projection-free algorithms for Online Convex Optimization (OCO) over a convex domain $\mathcal{K} \subset \mathbb{R}d$. Classical OCO algorithms (such as Online Gradient Descent) typically need to perform Euclidean projections onto the convex set $\cK$ to ensure feasibility of their iterates. Alternative algorithms, such as those based on the Frank-Wolfe method, swap potentially-expensive Euclidean projections onto $\mathcal{K}$ for linear optimization over $\mathcal{K}$. However, such algorithms have a sub-optimal regret in OCO compared to projection-based algorithms. In this paper, we look at a third type of algorithms that output approximate Newton iterates using a self-concordant barrier for the set of interest. The use of a self-concordant barrier automatically ensures feasibility without the need for projections. However, the computation of the Newton iterates requires a matrix inverse, which can still be expensive. As our main contribution, we show how the stability of the Newton iterates can be leveraged to compute the inverse Hessian only a vanishing fraction of the rounds, leading to a new efficient projection-free OCO algorithm with a state-of-the-art regret bound.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube