Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Multi-Granularity Hand Action Detection (2306.10858v2)

Published 19 Jun 2023 in cs.CV

Abstract: Detecting hand actions in videos is crucial for understanding video content and has diverse real-world applications. Existing approaches often focus on whole-body actions or coarse-grained action categories, lacking fine-grained hand-action localization information. To fill this gap, we introduce the FHA-Kitchens (Fine-Grained Hand Actions in Kitchen Scenes) dataset, providing both coarse- and fine-grained hand action categories along with localization annotations. This dataset comprises 2,377 video clips and 30,047 frames, annotated with approximately 200k bounding boxes and 880 action categories. Evaluation of existing action detection methods on FHA-Kitchens reveals varying generalization capabilities across different granularities. To handle multi-granularity in hand actions, we propose MG-HAD, an End-to-End Multi-Granularity Hand Action Detection method. It incorporates two new designs: Multi-dimensional Action Queries and Coarse-Fine Contrastive Denoising. Extensive experiments demonstrate MG-HAD's effectiveness for multi-granularity hand action detection, highlighting the significance of FHA-Kitchens for future research and real-world applications. The dataset and source code are available at https://github.com/superZ678/MG-HAD.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.