Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Personalized Elastic Embedding Learning for On-Device Recommendation (2306.10532v4)

Published 18 Jun 2023 in cs.IR

Abstract: To address privacy concerns and reduce network latency, there has been a recent trend of compressing cumbersome recommendation models trained on the cloud and deploying compact recommender models to resource-limited devices for the real-time recommendation. Existing solutions generally overlook device heterogeneity and user heterogeneity. They require devices with the same budget to share the same model and assume the available device resources (e.g., memory) are constant, which is not reflective of reality. Considering device and user heterogeneities as well as dynamic resource constraints, this paper proposes a Personalized Elastic Embedding Learning framework (PEEL) for the on-device recommendation, which generates Personalized Elastic Embeddings (PEEs) for devices with various memory budgets in a once-for-all manner, adapting to new or dynamic budgets, and addressing user preference diversity by assigning personalized embeddings for different groups of users. Specifically, it pretrains a global embedding table with collected user-item interaction instances and clusters users into groups. Then, it refines the embedding tables with local interaction instances within each group. PEEs are generated from the group-wise embedding blocks and their weights that indicate the contribution of each embedding block to the local recommendation performance. Given a memory budget, PEEL efficiently generates PEEs by selecting embedding blocks with the largest weights, making it adaptable to dynamic memory budgets on devices. Furthermore, a diversity-driven regularizer is implemented to encourage the expressiveness of embedding blocks, and a controller is utilized to optimize the weights. Extensive experiments are conducted on two public datasets, and the results show that PEEL yields superior performance on devices with heterogeneous and dynamic memory budgets.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube