Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Dual Adaptive Representation Alignment for Cross-domain Few-shot Learning (2306.10511v1)

Published 18 Jun 2023 in cs.CV

Abstract: Few-shot learning aims to recognize novel queries with limited support samples by learning from base knowledge. Recent progress in this setting assumes that the base knowledge and novel query samples are distributed in the same domains, which are usually infeasible for realistic applications. Toward this issue, we propose to address the cross-domain few-shot learning problem where only extremely few samples are available in target domains. Under this realistic setting, we focus on the fast adaptation capability of meta-learners by proposing an effective dual adaptive representation alignment approach. In our approach, a prototypical feature alignment is first proposed to recalibrate support instances as prototypes and reproject these prototypes with a differentiable closed-form solution. Therefore feature spaces of learned knowledge can be adaptively transformed to query spaces by the cross-instance and cross-prototype relations. Besides the feature alignment, we further present a normalized distribution alignment module, which exploits prior statistics of query samples for solving the covariant shifts among the support and query samples. With these two modules, a progressive meta-learning framework is constructed to perform the fast adaptation with extremely few-shot samples while maintaining its generalization capabilities. Experimental evidence demonstrates our approach achieves new state-of-the-art results on 4 CDFSL benchmarks and 4 fine-grained cross-domain benchmarks.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.