Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Transferring Neural Potentials For High Order Dependency Parsing (2306.10469v1)

Published 18 Jun 2023 in cs.CL

Abstract: High order dependency parsing leverages high order features such as siblings or grandchildren to improve state of the art accuracy of current first order dependency parsers. The present paper uses biaffine scores to provide an estimate of the arc scores and is then propagated into a graphical model. The inference inside the graphical model is solved using dual decomposition. The present algorithm propagates biaffine neural scores to the graphical model and by leveraging dual decomposition inference, the overall circuit is trained end-to-end to transfer first order informations to the high order informations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube