Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MATNet: Multi-Level Fusion Transformer-Based Model for Day-Ahead PV Generation Forecasting (2306.10356v2)

Published 17 Jun 2023 in cs.LG, cs.AI, and eess.SP

Abstract: Accurate forecasting of renewable generation is crucial to facilitate the integration of RES into the power system. Focusing on PV units, forecasting methods can be divided into two main categories: physics-based and data-based strategies, with AI-based models providing state-of-the-art performance. However, while these AI-based models can capture complex patterns and relationships in the data, they ignore the underlying physical prior knowledge of the phenomenon. Therefore, in this paper we propose MATNet, a novel self-attention transformer-based architecture for multivariate multi-step day-ahead PV power generation forecasting. It consists of a hybrid approach that combines the AI paradigm with the prior physical knowledge of PV power generation of physics-based methods. The model is fed with historical PV data and historical and forecast weather data through a multi-level joint fusion approach. The effectiveness of the proposed model is evaluated using the Ausgrid benchmark dataset with different regression performance metrics. The results show that our proposed architecture significantly outperforms the current state-of-the-art methods. These findings demonstrate the potential of MATNet in improving forecasting accuracy and suggest that it could be a promising solution to facilitate the integration of PV energy into the power grid.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. International Renewable Energy Agency, “Solar energy,” 2020, [Online; accessed 2023-02-20]. [Online]. Available: https://www.irena.org/Energy-Transition/Technology/Solar-energy
  2. International Energy Agency, “Solar-PV,” 9 2022, [Online; accessed 2023-02-20]. [Online]. Available: https://www.iea.org/reports/solar-pv
  3. Y. Zhou, “Artificial intelligence in renewable systems for transformation towards intelligent buildings,” Energy and AI, p. 100182, 2022.
  4. R. Meenal, D. Binu, K. Ramya, P. A. Michael, K. Vinoth Kumar, E. Rajasekaran, and B. Sangeetha, “Weather forecasting for renewable energy system: a review,” Archives of Computational Methods in Engineering, vol. 29, no. 5, pp. 2875–2891, 2022.
  5. J. Simeunović, B. Schubnel, P.-J. Alet, and R. E. Carrillo, “Spatio-temporal graph neural networks for multi-site pv power forecasting,” IEEE Transactions on Sustainable Energy, vol. 13, no. 2, pp. 1210–1220, 2021.
  6. C. Wan, J. Zhao, Y. Song, Z. Xu, J. Lin, and Z. Hu, “Photovoltaic and solar power forecasting for smart grid energy management,” CSEE Journal of Power and Energy Systems, vol. 1, no. 4, pp. 38–46, 2015.
  7. P. Gupta and R. Singh, “Pv power forecasting based on data-driven models: a review,” International Journal of Sustainable Engineering, vol. 14, no. 6, pp. 1733–1755, 2021.
  8. S. Aslam, H. Herodotou, S. M. Mohsin, N. Javaid, N. Ashraf, and S. Aslam, “A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids,” Renewable and Sustainable Energy Reviews, vol. 144, p. 110992, 2021.
  9. D. Kaur, S. N. Islam, M. A. Mahmud, M. E. Haque, and Z. Y. Dong, “Energy forecasting in smart grid systems: recent advancements in probabilistic deep learning,” IET Generation, Transmission & Distribution, vol. 16, no. 22, pp. 4461–4479, 2022.
  10. G. Alkhayat and R. Mehmood, “A review and taxonomy of wind and solar energy forecasting methods based on deep learning,” Energy and AI, vol. 4, p. 100060, 2021.
  11. T. Capotosto, A. Rita Di Fazio, S. Perna, F. Conte, G. Iannello, and P. De Falco, “Day-ahead forecast of pv systems and end-users in the contest of renewable energy communities,” in 2022 AEIT International Annual Conference (AEIT), 2022, pp. 1–6.
  12. “Modelling and optimal management of renewable energy communities using reversible solid oxide cells,” Applied Energy, vol. 334, p. 120657, 2023.
  13. S. Chai, Z. Xu, Y. Jia, and W. K. Wong, “A robust spatiotemporal forecasting framework for photovoltaic generation,” IEEE Transactions on Smart Grid, vol. 11, no. 6, pp. 5370–5382, 2020.
  14. Y. Li, L. Song, S. Zhang, L. Kraus, T. Adcox, R. Willardson, A. Komandur, and N. Lu, “A tcn-based hybrid forecasting framework for hours-ahead utility-scale pv forecasting,” IEEE Transactions on Smart Grid, 2023.
  15. M. Bai, Y. Chen, X. Zhao, J. Liu, and D. Yu, “Deep attention convlstm-based adaptive fusion of clear-sky physical prior knowledge and multivariable historical information for probabilistic prediction of photovoltaic power,” Expert Systems with Applications, vol. 202, p. 117335, 2022.
  16. Ausgrid, “Solar home electricity data,” 2014, [Online; Accessed 25-01-2023]. [Online]. Available: https://www.ausgrid.com.au/Industry/Our-Research/Data-to-share/Solar-home-electricity-data
  17. A. Fentis, C. Lytridis, V. G. Kaburlasos, E. Vrochidou, T. Pachidis, E. Bahatti, and M. Mestari, “A machine learning based approach for next-day photovoltaic power forecasting,” in 2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS).   IEEE, 2020, pp. 1–8.
  18. D. Kaur, S. N. Islam, M. Mahmud et al., “A vae-based bayesian bidirectional lstm for renewable energy forecasting,” arXiv preprint arXiv:2103.12969, 2021.
  19. ——, “A bayesian deep learning technique for multi-step ahead solar generation forecasting,” arXiv preprint arXiv:2203.11379, 2022.
  20. M. Tortora, E. Cordelli, and P. Soda, “Pytrack: A map-matching-based python toolbox for vehicle trajectory reconstruction,” IEEE Access, vol. 10, pp. 112 713–112 720, 2022.
  21. O. Ltd., “Openweathermap,” 2023, [Online; Accessed 25-01-2023]. [Online]. Available: https://openweathermap.org
  22. “Global solar irradiance data and PV system power output data,” https://solcast.com, 2019, [Online; accessed 2023-06-15].
  23. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  24. J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolutional sequence to sequence learning,” in International conference on machine learning.   PMLR, 2017, pp. 1243–1252.
  25. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  26. H. Song, D. Rajan, J. Thiagarajan, and A. Spanias, “Attend and diagnose: Clinical time series analysis using attention models,” in Proceedings of the AAAI conference on artificial intelligence, vol. 32, 2018.
  27. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  28. A. Baevski and M. Auli, “Adaptive input representations for neural language modeling,” arXiv preprint arXiv:1809.10853, 2018.
  29. A. Trask, D. Gilmore, and M. Russell, “Modeling order in neural word embeddings at scale,” in International Conference on Machine Learning.   PMLR, 2015, pp. 2266–2275.
  30. K. Bayoudh, R. Knani, F. Hamdaoui, and A. Mtibaa, “A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets,” The Visual Computer, pp. 1–32, 2021.
  31. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” The journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.
  32. F. Conte, S. Massucco, G.-P. Schiapparelli, and F. Silvestro, “Day-ahead and intra-day planning of integrated bess-pv systems providing frequency regulation,” IEEE Transactions on Sustainable Energy, vol. 11, no. 3, pp. 1797–1806, 2020.
  33. J. Zhang, X. Kong, J. Shen, and L. Sun, “Day-ahead optimal scheduling of a standalone solar-wind-gas based integrated energy system with and without considering thermal inertia and user comfort,” Journal of Energy Storage, vol. 57, p. 106187, 2023.
  34. F. Conte, S. Massucco, M. Saviozzi, and F. Silvestro, “A stochastic optimization method for planning and real-time control of integrated pv-storage systems: Design and experimental validation,” IEEE Transactions on Sustainable Energy, vol. 9, no. 3, pp. 1188–1197, 2018.
  35. N. E. Michael, S. Hasan, A. Al-Durra, and M. Mishra, “Economic scheduling of virtual power plant in day-ahead and real-time markets considering uncertainties in electrical parameters,” Energy Reports, vol. 9, pp. 3837–3850, 2023.
  36. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning library,” Advances in neural information processing systems, vol. 32, 2019.
  37. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  38. J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence modeling,” in NIPS 2014 Workshop on Deep Learning, December 2014, 2014.
  39. F. X. Diebold and R. S. Mariano, “Comparing predictive accuracy,” Journal of Business & economic statistics, vol. 20, no. 1, pp. 134–144, 2002.

Summary

We haven't generated a summary for this paper yet.