Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multi-scale Spatial-temporal Interaction Network for Video Anomaly Detection (2306.10239v2)

Published 17 Jun 2023 in cs.CV

Abstract: Video Anomaly Detection (VAD) is an essential yet challenging task in signal processing. Since certain anomalies cannot be detected by isolated analysis of either temporal or spatial information, the interaction between these two types of data is considered crucial for VAD. However, current dual-stream architectures either confine this integral interaction to the bottleneck of the autoencoder or introduce anomaly-irrelevant background pixels into the interactive process, hindering the accuracy of VAD. To address these deficiencies, we propose a Multi-scale Spatial-Temporal Interaction Network (MSTI-Net) for VAD. First, to prioritize the detection of moving objects in the scene and harmonize the substantial semantic discrepancies between the two types of data, we propose an Attention-based Spatial-Temporal Fusion Module (ASTFM) as a substitute for the conventional direct fusion. Furthermore, we inject multi-ASTFM-based connections that bridge the appearance and motion streams of the dual-stream network, thus fostering multi-scale spatial-temporal interaction. Finally, to bolster the delineation between normal and abnormal activities, our system records the regular information in a memory module. Experimental results on three benchmark datasets validate the effectiveness of our approach, which achieves AUCs of 96.8%, 87.6%, and 73.9% on the UCSD Ped2, CUHK Avenue, and ShanghaiTech datasets, respectively.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.