Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Runtime Construction of Large-Scale Spiking Neuronal Network Models on GPU Devices (2306.09855v1)

Published 16 Jun 2023 in q-bio.NC and cs.NE

Abstract: Simulation speed matters for neuroscientific research: this includes not only how quickly the simulated model time of a large-scale spiking neuronal network progresses, but also how long it takes to instantiate the network model in computer memory. On the hardware side, acceleration via highly parallel GPUs is being increasingly utilized. On the software side, code generation approaches ensure highly optimized code, at the expense of repeated code regeneration and recompilation after modifications to the network model. Aiming for a greater flexibility with respect to iterative model changes, here we propose a new method for creating network connections interactively, dynamically, and directly in GPU memory through a set of commonly used high-level connection rules. We validate the simulation performance with both consumer and data center GPUs on two neuroscientifically relevant models: a cortical microcircuit of about 77,000 leaky-integrate-and-fire neuron models and 300 million static synapses, and a two-population network recurrently connected using a variety of connection rules. With our proposed ad hoc network instantiation, both network construction and simulation times are comparable or shorter than those obtained with other state-of-the-art simulation technologies, while still meeting the flexibility demands of explorative network modeling.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. Abi Akar, N., Cumming, B., Karakasis, V., Küsters, A., Klijn, W., Peyser, A., and Yates, S., “Arbor — A Morphologically-Detailed Neural Network Simulation Library for Contemporary High-Performance Computing Architectures,” in 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP) (2019) pp. 274–282.
  2. van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M., Stokes, A. B., Lester, D. R., Diesmann, M., and Furber, S. B., “Performance comparison of the digital neuromorphic hardware SpiNNaker and the neural network simulation software NEST for a full-scale cortical microcircuit model,” Frontiers in Neuroscience 12 (2018), 10.3389/fnins.2018.00291.
  3. Albers, J., Pronold, J., Kurth, A. C., Vennemo, S. B., Mood, K. H., Patronis, A., Terhorst, D., Jordan, J., Kunkel, S., Tetzlaff, T., Diesmann, M., and Senk, J., “A modular workflow for performance benchmarking of neuronal network simulations,” Frontiers in Neuroinformatics 16 (2022), 10.3389/fninf.2022.837549.
  4. Alevi, D., Stimberg, M., Sprekeler, H., Obermayer, K., and Augustin, M., “Brian2cuda: Flexible and efficient simulation of spiking neural network models on GPUs,” Frontiers in Neuroinformatics 16 (2022), 10.3389/fninf.2022.883700.
  5. Awile, O., Kumbhar, P., Cornu, N., Dura-Bernal, S., King, J. G., Lupton, O., Magkanaris, I., McDougal, R. A., Newton, A. J. H., Pereira, F., Săvulescu, A., Carnevale, N. T., Lytton, W. W., Hines, M. L., and Schürmann, F., “Modernizing the NEURON simulator for sustainability, portability, and performance,” Frontiers in Neuroinformatics 16 (2022), 10.3389/fninf.2022.884046.
  6. Balaji, A., Adiraju, P., Kashyap, H. J., Das, A., Krichmar, J. L., Dutt, N. D., and Catthoor, F., “Pycarl: A pynn interface for hardware-software co-simulation of spiking neural network,” in 2020 International Joint Conference on Neural Networks (IJCNN) (2020) pp. 1–10.
  7. Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T., Rasmussen, D., Choo, X., Voelker, A., and Eliasmith, C., “Nengo: a Python tool for building large-scale functional brain models,” Frontiers in Neuroinformatics 7, 1–13 (2014).
  8. Dasbach, S., Tetzlaff, T., Diesmann, M., and Senk, J., “Dynamical characteristics of recurrent neuronal networks are robust against low synaptic weight resolution,” Frontiers in Neuroscience 15 (2021), 10.3389/fnins.2021.757790.
  9. Davison, A. P., “PyNN: a common interface for neuronal network simulators,” Frontiers in Neuroinformatics 2 (2008), 10.3389/neuro.11.011.2008.
  10. Eppler, J., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O., “Pynest: a convenient interface to the nest simulator,” Frontiers in Neuroinformatics 2 (2009), 10.3389/neuro.11.012.2008.
  11. Gewaltig, M.-O.and Diesmann, M., “NEST (NEural Simulation Tool),” Scholarpedia 2, 1430 (2007).
  12. Golosio, B., De Luca, C., Pastorelli, E., Simula, F., Tiddia, G., and Paolucci, P. S., “Toward a possible integration of NeuronGPU in NEST,” in NEST Conference, Vol. 7 (2020).
  13. Golosio, B., Tiddia, G., De Luca, C., Pastorelli, E., Simula, F., and Paolucci, P. S., “Fast simulations of highly-connected spiking cortical models using gpus,” Frontiers in Computational Neuroscience 15 (2021), 10.3389/fncom.2021.627620.
  14. Heittmann, A., Psychou, G., Trensch, G., Cox, C. E., Wilcke, W. W., Diesmann, M., and Noll, T. G., “Simulating the cortical microcircuit significantly faster than real time on the IBM INC-3000 neural supercomputer,” Frontiers in Neuroscience 15 (2022), 10.3389/fnins.2021.728460.
  15. Izhikevich, E., “Simple model of spiking neurons,” IEEE Transactions on Neural Networks 14, 1569–1572 (2003).
  16. Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., Diesmann, M., and Kunkel, S., “Extremely scalable spiking neuronal network simulation code: From laptops to exascale computers,” Frontiers in Neuroinformatics 12 (2018), 10.3389/fninf.2018.00002.
  17. Knight, J. C., Komissarov, A., and Nowotny, T., “Pygenn: A python library for gpu-enhanced neural networks,” Frontiers in Neuroinformatics 15 (2021), 10.3389/fninf.2021.659005.
  18. Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F., and Schürmann, F., “Coreneuron : An optimized compute engine for the neuron simulator,” Frontiers in Neuroinformatics 13 (2019), 10.3389/fninf.2019.00063.
  19. Kurth, A. C., Senk, J., Terhorst, D., Finnerty, J., and Diesmann, M., “Sub-realtime simulation of a neuronal network of natural density,” Neuromorphic Computing and Engineering 2, 021001 (2022).
  20. Morrison, A.and Diesmann, M., “Maintaining causality in discrete time neuronal network simulations,” in Lectures in Supercomputational Neurosciences: Dynamics in Complex Brain Networks, edited by P. b. Graben, C. Zhou, M. Thiel,  and J. Kurths (Springer, Berlin, Heidelberg, 2008) pp. 267–278.
  21. Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., and Veidenbaum, A. V., “A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors,” Neural Networks 22, 791–800 (2009).
  22. Niedermeier, L., Chen, K., Xing, J., Das, A., Kopsick, J., Scott, E., Sutton, N., Weber, K., Dutt, N., and Krichmar, J. L., “Carlsim 6: An open source library for large-scale, biologically detailed spiking neural network simulation,” in 2022 International Joint Conference on Neural Networks (IJCNN) (2022) pp. 1–10.
  23. Parzen, E., “On estimation of a probability density function and mode,” The Annals of Mathematical Statistics 33, 1065–1076 (1962).
  24. Potjans, T. C.and Diesmann, M., “The cell-type specific cortical microcircuit: Relating structure and activity in a full-scale spiking network model,” Cerebral Cortex 24, 785–806 (2014).
  25. Rhodes, O., Peres, L., Rowley, A. G. D., Gait, A., Plana, L. A., Brenninkmeijer, C., and Furber, S. B., “Real-time cortical simulation on neuromorphic hardware,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, 20190160 (2019).
  26. Rosenblatt, M., “Remarks on some nonparametric estimates of a density function,” The Annals of Mathematical Statistics 27, 832–837 (1956).
  27. Rotter, S.and Diesmann, M., “Exact digital simulation of time-invariant linear systems with applications to neuronal modeling,” Biological Cybernetics 81, 381–402 (1999).
  28. Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Diesmann, M., and van Albada, S. J., “A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas,” PLOS Computational Biology 14, e1006359 (2018).
  29. Schmitt, F. J., Rostami, V., and Nawrot, M. P., “Efficient parameter calibration and real-time simulation of large-scale spiking neural networks with genn and nest,” Frontiers in Neuroinformatics 17 (2023), 10.3389/fninf.2023.941696.
  30. Senk, J., Kriener, B., Djurfeldt, M., Voges, N., Jiang, H.-J., Schüttler, L., Gramelsberger, G., Diesmann, M., Plesser, H. E., and van Albada, S. J., “Connectivity concepts in neuronal network modeling,” PLOS Computational Biology 18, e1010086 (2022).
  31. Silverman, B. W., Density estimation for statistics and data analysis (Chapman and Hall, London, 1986).
  32. Spreizer, S., Mitchell, J., Jordan, J., Wybo, W., Kurth, A., Vennemo, S. B., Pronold, J., Trensch, G., Benelhedi, M. A., Terhorst, D., Eppler, J. M., Mørk, H., Linssen, C., Senk, J., Lober, M., Morrison, A., Graber, S., Kunkel, S., Gutzen, R., and Plesser, H. E., “Nest 3.3,” Zenodo  (2022), 10.5281/zenodo.6368024.
  33. Stimberg, M., Brette, R., and Goodman, D. F., “Brian 2, an intuitive and efficient neural simulator,” eLife 8, e47314 (2019).
  34. Stimberg, M., Goodman, D. F. M., and Nowotny, T., “Brian2genn: accelerating spiking neural network simulations with graphics hardware,” Scientific Reports 10 (2020), 10.1038/s41598-019-54957-7.
  35. Thörnig, P., “JURECA: Data centric and booster modules implementing the modular supercomputing architecture at jülich supercomputing centre,” Journal of large-scale research facilities JLSRF 7 (2021), 10.17815/jlsrf-7-182.
  36. Tiddia, G., Golosio, B., Albers, J., Senk, J., Simula, F., Pronold, J., Fanti, V., Pastorelli, E., Paolucci, P. S., and van Albada, S. J., “Fast simulation of a multi-area spiking network model of macaque cortex on an mpi-gpu cluster,” Frontiers in Neuroinformatics 16 (2022), 10.3389/fninf.2022.883333.
  37. Vieth, B. V. S., “JUSUF: Modular tier-2 supercomputing and cloud infrastructure at jülich supercomputing centre,” Journal of large-scale research facilities JLSRF 7 (2021), 10.17815/jlsrf-7-179.
  38. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors,, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods 17, 261–272 (2020).
  39. Vitay, J., Dinkelbach, H. U., and Hamker, F. H., “ANNarchy: a code generation approach to neural simulations on parallel hardware,” Frontiers in Neuroinformatics 9 (2015), 10.3389/fninf.2015.00019.
  40. Waskom, M. L., “seaborn: statistical data visualization,” Journal of Open Source Software 6, 3021 (2021).
Citations (3)

Summary

We haven't generated a summary for this paper yet.