Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Dynamic Decision Tree Ensembles for Energy-Efficient Inference on IoT Edge Nodes (2306.09789v1)

Published 16 Jun 2023 in cs.LG

Abstract: With the increasing popularity of Internet of Things (IoT) devices, there is a growing need for energy-efficient Machine Learning (ML) models that can run on constrained edge nodes. Decision tree ensembles, such as Random Forests (RFs) and Gradient Boosting (GBTs), are particularly suited for this task, given their relatively low complexity compared to other alternatives. However, their inference time and energy costs are still significant for edge hardware. Given that said costs grow linearly with the ensemble size, this paper proposes the use of dynamic ensembles, that adjust the number of executed trees based both on a latency/energy target and on the complexity of the processed input, to trade-off computational cost and accuracy. We focus on deploying these algorithms on multi-core low-power IoT devices, designing a tool that automatically converts a Python ensemble into optimized C code, and exploring several optimizations that account for the available parallelism and memory hierarchy. We extensively benchmark both static and dynamic RFs and GBTs on three state-of-the-art IoT-relevant datasets, using an 8-core ultra-lowpower System-on-Chip (SoC), GAP8, as the target platform. Thanks to the proposed early-stopping mechanisms, we achieve an energy reduction of up to 37.9% with respect to static GBTs (8.82 uJ vs 14.20 uJ per inference) and 41.7% with respect to static RFs (2.86 uJ vs 4.90 uJ per inference), without losing accuracy compared to the static model.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube