Papers
Topics
Authors
Recent
Search
2000 character limit reached

Competitive and Resource Efficient Factored Hybrid HMM Systems are Simpler Than You Think

Published 15 Jun 2023 in cs.SD and eess.AS | (2306.09517v1)

Abstract: Building competitive hybrid hidden Markov model~(HMM) systems for automatic speech recognition~(ASR) requires a complex multi-stage pipeline consisting of several training criteria. The recent sequence-to-sequence models offer the advantage of having simpler pipelines that can start from-scratch. We propose a purely neural based single-stage from-scratch pipeline for a context-dependent hybrid HMM that offers similar simplicity. We use an alignment from a full-sum trained zero-order posterior HMM with a BLSTM encoder. We show that with this alignment we can build a Conformer factored hybrid that performs even better than both a state-of-the-art classic hybrid and a factored hybrid trained with alignments taken from more complex Gaussian mixture based systems. Our finding is confirmed on Switchboard 300h and LibriSpeech 960h tasks with comparable results to other approaches in the literature, and by additionally relying on a responsible choice of available computational resources.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.