Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Distillation Strategies for Discriminative Speech Recognition Rescoring (2306.09452v1)

Published 15 Jun 2023 in eess.AS

Abstract: Second-pass rescoring is employed in most state-of-the-art speech recognition systems. Recently, BERT based models have gained popularity for re-ranking the n-best hypothesis by exploiting the knowledge from masked LLM pre-training. Further, fine-tuning with discriminative loss such as minimum word error rate (MWER) has shown to perform better than likelihood-based loss. Streaming applications with low latency requirements impose significant constraints on the size of the models, thereby limiting the word error rate (WER) performance gains. In this paper, we propose effective strategies for distilling from large models discriminatively trained with the MWER objective. We experiment on Librispeech and production scale internal dataset for voice-assistant. Our results demonstrate relative improvements of upto 7% WER over student models trained with MWER. We also show that the proposed distillation can reduce the WER gap between the student and the teacher by 62% upto 100%.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.