Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Plug-in Hybrid Electric Vehicle Energy Management with Clutch Engagement Control via Continuous-Discrete Reinforcement Learning (2306.08823v2)

Published 15 Jun 2023 in eess.SY and cs.SY

Abstract: Energy management strategy (EMS) is a key technology for plug-in hybrid electric vehicles (PHEVs). The energy management of certain series-parallel PHEVs involves the control of continuous variables, such as engine torque, and discrete variables, such as clutch engagement/disengagement. We establish a control-oriented model for a series-parallel plug-in hybrid system with clutch engagement control from the perspective of mixed-integer programming. Subsequently, we design an EMS based on continuous-discrete reinforcement learning (CDRL), which enables simultaneous output of continuous and discrete variables. During training, we introduce state-of-charge (SOC) randomization to ensure that the hybrid system exhibits optimal energy-saving performance in both high and low SOC. Finally, the effectiveness of the proposed CDRL strategy is verified by comparing EMS based on charge-depleting charge-sustaining (CD-CS) with rule-based clutch engagement control, and Dynamic Programming (DP). The simulation results show that, under a high SOC, the CDRL strategy proposed in this paper can improve energy efficiency by 8.3% compared to CD-CS, and the energy consumption is just 6.6% higher than the global optimum based on DP, while under a low SOC, the numbers are 4.1% and 3.9%, respectively.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube