Papers
Topics
Authors
Recent
2000 character limit reached

Flexible Krylov Methods for Group Sparsity Regularization (2306.08499v1)

Published 14 Jun 2023 in math.NA and cs.NA

Abstract: This paper introduces new solvers for efficiently computing solutions to large-scale inverse problems with group sparsity regularization, including both non-overlapping and overlapping groups. Group sparsity regularization refers to a type of structured sparsity regularization, where the goal is to impose additional structure in the regularization process by assigning variables to predefined groups that may represent graph or network structures. Special cases of group sparsity regularization include $\ell_1$ and isotropic total variation regularization. In this work, we develop hybrid projection methods based on flexible Krylov subspaces, where we first recast the group sparsity regularization term as a sequence of 2-norm penalization terms using adaptive regularization matrices in an iterative reweighted norm fashion. Then we exploit flexible preconditioning techniques to efficiently incorporate the weight updates. The main advantages of these methods are that they are computationally efficient (leveraging the advantages of flexible methods), they are general (and therefore very easily adaptable to new regularization term choices), and they are able to select the regularization parameters automatically and adaptively (exploiting the advantages of hybrid methods). Extensions to multiple regularization terms and solution decomposition frameworks (e.g., for anomaly detection) are described, and a variety of numerical examples demonstrate both the efficiency and accuracy of the proposed approaches compared to existing solvers.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.