Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 352 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

A Relaxed Optimization Approach for Adversarial Attacks against Neural Machine Translation Models (2306.08492v1)

Published 14 Jun 2023 in cs.CL

Abstract: In this paper, we propose an optimization-based adversarial attack against Neural Machine Translation (NMT) models. First, we propose an optimization problem to generate adversarial examples that are semantically similar to the original sentences but destroy the translation generated by the target NMT model. This optimization problem is discrete, and we propose a continuous relaxation to solve it. With this relaxation, we find a probability distribution for each token in the adversarial example, and then we can generate multiple adversarial examples by sampling from these distributions. Experimental results show that our attack significantly degrades the translation quality of multiple NMT models while maintaining the semantic similarity between the original and adversarial sentences. Furthermore, our attack outperforms the baselines in terms of success rate, similarity preservation, effect on translation quality, and token error rate. Finally, we propose a black-box extension of our attack by sampling from an optimized probability distribution for a reference model whose gradients are accessible.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.