Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Dealing With Non-Gaussianity of SAR-derived Wet Surface Ratio for Flood Extent Representation Improvement (2306.08466v1)

Published 14 Jun 2023 in eess.IV

Abstract: Owing to advances in data assimilation, notably Ensemble Kalman Filter (EnKF), flood simulation and forecast capabilities have greatly improved in recent years. The motivation of the research work is to reduce comprehensively the uncertainties in the model parameters, forcing and hydraulic state, and consequently improve the overall flood reanalysis and forecast capability, especially in the floodplain. It aims at assimilating SAR-derived (typically from Sentinel-1 mission) flood extent observations, expressed in terms of wet surface ratio. The non-Gaussianity of the observation errors associated with the SAR flood observations violates a major hypothesis regarding the EnKF and jeopardizes the optimality of the filter analysis. Therefore, a special treatment of such non-Gaussianity with a Gaussian anamorphosis process is thus proposed. This strategy was validated and applied over the Garonne Marmandaise catchment (Southwest of France) represented with the TELEMAC-2D hydrodynamic model, focusing on a major flood event that occurred in December 2019. The assimilation of the SAR-derived wet surface ratio observations, in complement to the in-situ water surface elevations, is illustrated to consequentially improve the flood representation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. J. Rentschler and M. Salhab, People in harm’s way: Flood exposure and poverty in 189 countries. The World Bank, 2020.
  2. SIAM, 2016.
  3. S. Martinis, C. Kuenzer, and A. Twele, “Flood studies using synthetic aperture radar data,” in Remote Sensing Handbook, pp. 145–173, CRC Press, 2015.
  4. L. Giustarini, P. Matgen, R. Hostache, M. Montanari, D. Plaza, V. Pauwels, G. De Lannoy, R. D. Keyser, L. Pfister, L. Hoffmann, et al., “Assimilating SAR-derived water level data into a hydraulic model: a case study,” Hydrology and Earth System Sciences, vol. 15, no. 7, pp. 2349–2365, 2011.
  5. B. Revilla-Romero, N. Wanders, P. Burek, P. Salamon, and A. de Roo, “Integrating remotely sensed surface water extent into continental scale hydrology,” Journal of hydrology, vol. 543, pp. 659–670, 2016.
  6. X. Lai, Q. Liang, H. Yesou, and S. Daillet, “Variational assimilation of remotely sensed flood extents using a 2-D flood model,” Hydrology and Earth System Sciences, vol. 18, no. 11, pp. 4325–4339, 2014.
  7. R. Hostache, M. Chini, L. Giustarini, J. Neal, D. Kavetski, M. Wood, G. Corato, R.-M. Pelich, and P. Matgen, “Near-real-time assimilation of SAR-derived flood maps for improving flood forecasts,” Water Resources Research, vol. 54, no. 8, pp. 5516–5535, 2018.
  8. E. S. Cooper, S. L. Dance, J. García-Pintado, N. K. Nichols, and P. J. Smith, “Observation operators for assimilation of satellite observations in fluvial inundation forecasting,” Hydrology and Earth System Sciences, vol. 23, no. 6, pp. 2541–2559, 2019.
  9. L. Giustarini, R. Hostache, D. Kavetski, M. Chini, G. Corato, S. Schlaffer, and P. Matgen, “Probabilistic flood mapping using synthetic aperture radar data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 12, pp. 6958–6969, 2016.
  10. T. H. Nguyen, S. Ricci, A. Piacentini, C. Fatras, P. Kettig, G. Blanchet, S. Peña Luque, and S. Baillarin, “Dual State-Parameter Assimilation of SAR-Derived Wet Surface Ratio for Improving Fluvial Flood Reanalysis,” Water Resources Research, vol. 58, no. 11, p. e2022WR033155, 2022. e2022WR033155 2022WR033155.
  11. P. Kettig, S. Baillarin, G. Blanchet, C. Taillan, S. Ricci, T.-H. Nguyen, T. Huang, A. Altinok, N. T. Chung, G. Valladeau, R. Goeury, and A. Roumagnac, “The SCO-FLOODDAM Project: New Observing Strategies for Flood Detection, Alert and Rapid Mapping,” in IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium, pp. 1464–1467, 2021.
  12. T. H. Nguyen, S. Ricci, C. Fatras, A. Piacentini, A. Delmotte, E. Lavergne, and P. Kettig, “Improvement of flood extent representation with remote sensing data and data assimilation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–22, 2022.
  13. L. Bertino, G. Evensen, and H. Wackernagel, “Sequential Data Assimilation Techniques in Oceanography,” International Statistical Review, vol. 71, no. 2, pp. 223–241, 2003.
  14. E. Simon and L. Bertino, “Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: A twin experiment,” Ocean Science (OS), 03 2009.
  15. T. H. Nguyen, S. Ricci, A. Piacentini, E. Simon, R. Rodriguez Suquet, and S. Peña Luque, “Gaussian anamorphosis for ensemble kalman filter analysis of SAR-derived wet surface ratio observations,” arXiv preprint arXiv:2304.01058, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.