Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Multiclass Confidence and Localization Calibration for Object Detection (2306.08271v1)

Published 14 Jun 2023 in cs.CV

Abstract: Albeit achieving high predictive accuracy across many challenging computer vision problems, recent studies suggest that deep neural networks (DNNs) tend to make overconfident predictions, rendering them poorly calibrated. Most of the existing attempts for improving DNN calibration are limited to classification tasks and restricted to calibrating in-domain predictions. Surprisingly, very little to no attempts have been made in studying the calibration of object detection methods, which occupy a pivotal space in vision-based security-sensitive, and safety-critical applications. In this paper, we propose a new train-time technique for calibrating modern object detection methods. It is capable of jointly calibrating multiclass confidence and box localization by leveraging their predictive uncertainties. We perform extensive experiments on several in-domain and out-of-domain detection benchmarks. Results demonstrate that our proposed train-time calibration method consistently outperforms several baselines in reducing calibration error for both in-domain and out-of-domain predictions. Our code and models are available at https://github.com/bimsarapathiraja/MCCL.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube