Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On coloring parameters of triangle-free planar $(n,m)$-graphs (2306.08052v2)

Published 13 Jun 2023 in math.CO and cs.DM

Abstract: An $(n,m)$-graph is a graph with $n$ types of arcs and $m$ types of edges. A homomorphism of an $(n,m)$-graph $G$ to another $(n,m)$-graph $H$ is a vertex mapping that preserves the adjacencies along with their types and directions. The order of a smallest (with respect to the number of vertices) such $H$ is the $(n,m)$-chromatic number of $G$.Moreover, an $(n,m)$-relative clique $R$ of an $(n,m)$-graph $G$ is a vertex subset of $G$ for which no two distinct vertices of $R$ get identified under any homomorphism of $G$. The $(n,m)$-relative clique number of $G$, denoted by $\omega_{r(n,m)}(G)$, is the maximum $|R|$ such that $R$ is an $(n,m)$-relative clique of $G$. In practice, $(n,m)$-relative cliques are often used for establishing lower bounds of $(n,m)$-chromatic number of graph families. Generalizing an open problem posed by Sopena [Discrete Mathematics 2016] in his latest survey on oriented coloring, Chakroborty, Das, Nandi, Roy and Sen [Discrete Applied Mathematics 2022] conjectured that $\omega_{r(n,m)}(G) \leq 2 (2n+m)2 + 2$ for any triangle-free planar $(n,m)$-graph $G$ and that this bound is tight for all $(n,m) \neq (0,1)$.In this article, we positively settle this conjecture by improving the previous upper bound of $\omega_{r(n,m)}(G) \leq 14 (2n+m)2 + 2$ to $\omega_{r(n,m)}(G) \leq 2 (2n+m)2 + 2$, and by finding examples of triangle-free planar graphs that achieve this bound. As a consequence of the tightness proof, we also establish a new lower bound of $2 (2n+m)2 + 2$ for the $(n,m)$-chromatic number for the family of triangle-free planar graphs.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.