Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Pruning the Way to Reliable Policies: A Multi-Objective Deep Q-Learning Approach to Critical Care (2306.08044v3)

Published 13 Jun 2023 in cs.LG and cs.AI

Abstract: Medical treatments often involve a sequence of decisions, each informed by previous outcomes. This process closely aligns with reinforcement learning (RL), a framework for optimizing sequential decisions to maximize cumulative rewards under unknown dynamics. While RL shows promise for creating data-driven treatment plans, its application in medical contexts is challenging due to the frequent need to use sparse rewards, primarily defined based on mortality outcomes. This sparsity can reduce the stability of offline estimates, posing a significant hurdle in fully utilizing RL for medical decision-making. We introduce a deep Q-learning approach to obtain more reliable critical care policies by integrating relevant but noisy frequently measured biomarker signals into the reward specification without compromising the optimization of the main outcome. Our method prunes the action space based on all available rewards before training a final model on the sparse main reward. This approach minimizes potential distortions of the main objective while extracting valuable information from intermediate signals to guide learning. We evaluate our method in off-policy and offline settings using simulated environments and real health records from intensive care units. Our empirical results demonstrate that our method outperforms common offline RL methods such as conservative Q-learning and batch-constrained deep Q-learning. By disentangling sparse rewards and frequently measured reward proxies through action pruning, our work represents a step towards developing reliable policies that effectively harness the wealth of available information in data-intensive critical care environments.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com