Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Revisiting and Advancing Adversarial Training Through A Simple Baseline (2306.07613v2)

Published 13 Jun 2023 in cs.CV and cs.LG

Abstract: In this paper, we delve into the essential components of adversarial training which is a pioneering defense technique against adversarial attacks. We indicate that some factors such as the loss function, learning rate scheduler, and data augmentation, which are independent of the model architecture, will influence adversarial robustness and generalization. When these factors are controlled for, we introduce a simple baseline approach, termed SimpleAT, that performs competitively with recent methods and mitigates robust overfitting. We conduct extensive experiments on CIFAR-10/100 and Tiny-ImageNet, which validate the robustness of SimpleAT against state-of-the-art adversarial attackers such as AutoAttack. Our results also demonstrate that SimpleAT exhibits good performance in the presence of various image corruptions, such as those found in the CIFAR-10-C. In addition, we empirically show that SimpleAT is capable of reducing the variance in model predictions, which is considered the primary contributor to robust overfitting. Our results also reveal the connections between SimpleAT and many advanced state-of-the-art adversarial defense methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)