Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Textual Augmentation Techniques Applied to Low Resource Machine Translation: Case of Swahili (2306.07414v1)

Published 12 Jun 2023 in cs.CL

Abstract: In this work we investigate the impact of applying textual data augmentation tasks to low resource machine translation. There has been recent interest in investigating approaches for training systems for languages with limited resources and one popular approach is the use of data augmentation techniques. Data augmentation aims to increase the quantity of data that is available to train the system. In machine translation, majority of the language pairs around the world are considered low resource because they have little parallel data available and the quality of neural machine translation (NMT) systems depend a lot on the availability of sizable parallel corpora. We study and apply three simple data augmentation techniques popularly used in text classification tasks; synonym replacement, random insertion and contextual data augmentation and compare their performance with baseline neural machine translation for English-Swahili (En-Sw) datasets. We also present results in BLEU, ChrF and Meteor scores. Overall, the contextual data augmentation technique shows some improvements both in the $EN \rightarrow SW$ and $SW \rightarrow EN$ directions. We see that there is potential to use these methods in neural machine translation when more extensive experiments are done with diverse datasets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (2)
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube