Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Adversarial Attacks on the Interpretation of Neuron Activation Maximization (2306.07397v1)

Published 12 Jun 2023 in cs.LG and cs.CV

Abstract: The internal functional behavior of trained Deep Neural Networks is notoriously difficult to interpret. Activation-maximization approaches are one set of techniques used to interpret and analyze trained deep-learning models. These consist in finding inputs that maximally activate a given neuron or feature map. These inputs can be selected from a data set or obtained by optimization. However, interpretability methods may be subject to being deceived. In this work, we consider the concept of an adversary manipulating a model for the purpose of deceiving the interpretation. We propose an optimization framework for performing this manipulation and demonstrate a number of ways that popular activation-maximization interpretation techniques associated with CNNs can be manipulated to change the interpretations, shedding light on the reliability of these methods.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.