Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Attacks on the Interpretation of Neuron Activation Maximization (2306.07397v1)

Published 12 Jun 2023 in cs.LG and cs.CV

Abstract: The internal functional behavior of trained Deep Neural Networks is notoriously difficult to interpret. Activation-maximization approaches are one set of techniques used to interpret and analyze trained deep-learning models. These consist in finding inputs that maximally activate a given neuron or feature map. These inputs can be selected from a data set or obtained by optimization. However, interpretability methods may be subject to being deceived. In this work, we consider the concept of an adversary manipulating a model for the purpose of deceiving the interpretation. We propose an optimization framework for performing this manipulation and demonstrate a number of ways that popular activation-maximization interpretation techniques associated with CNNs can be manipulated to change the interpretations, shedding light on the reliability of these methods.

Citations (9)

Summary

We haven't generated a summary for this paper yet.