Collaborative Robotic Biopsy with Trajectory Guidance and Needle Tip Force Feedback (2306.07129v2)
Abstract: The diagnostic value of biopsies is highly dependent on the placement of needles. Robotic trajectory guidance has been shown to improve needle positioning, but feedback for real-time navigation is limited. Haptic display of needle tip forces can provide rich feedback for needle navigation by enabling localization of tissue structures along the insertion path. We present a collaborative robotic biopsy system that combines trajectory guidance with kinesthetic feedback to assist the physician in needle placement. The robot aligns the needle while the insertion is performed in collaboration with a medical expert who controls the needle position on site. We present a needle design that senses forces at the needle tip based on optical coherence tomography and machine learning for real-time data processing. Our robotic setup allows operators to sense deep tissue interfaces independent of frictional forces to improve needle placement relative to a desired target structure. We first evaluate needle tip force sensing in ex-vivo tissue in a phantom study. We characterize the tip forces during insertions with constant velocity and demonstrate the ability to detect tissue interfaces in a collaborative user study. Participants are able to detect 91% of ex-vivo tissue interfaces based on needle tip force feedback alone. Finally, we demonstrate that even smaller, deep target structures can be accurately sampled by performing post-mortem in situ biopsies of the pancreas.
- Ather Adnan and Rahul A. Sheth, “Image-guided percutaneous biopsy of the liver,” Techniques in Vascular and Interventional Radiology, vol. 24, no. 4, p. 100773, 2021.
- G. A. McLeod, “Novel approaches to needle tracking and visualisation,” Anaesthesia, vol. 76 Suppl 1, pp. 160–170, 2021.
- J. I. Son, S. Y. Rhee, J.-T. Woo, W. S. Park, J. K. Byun, Y.-J. Kim, J. M. Byun, S. O. Chin, S. Chon, S. Oh, S. W. Kim, and Y. S. Kim, “Insufficient experience in thyroid fine-needle aspiration leads to misdiagnosis of thyroid cancer,” Endocrinology and metabolism (Seoul, Korea), vol. 29, no. 3, pp. 293–299, 2014.
- U. Fehrenbach, R. Thiel, P.-D. Bady, T. A. Auer, A. Kahl, D. Geisel, E. Lopez Hänninen, R. Öllinger, J. Pratschke, B. Gebauer, and T. Denecke, “Ct fluoroscopy-guided pancreas transplant biopsies: a retrospective evaluation of predictors of complications and success rates,” Transplant international : official journal of the European Society for Organ Transplantation, vol. 34, no. 5, pp. 855–864, 2021.
- K. P. H. Pritzker and H. J. Nieminen, “Needle biopsy adequacy in the era of precision medicine and value-based health care,” Archives of pathology & laboratory medicine, vol. 143, no. 11, pp. 1399–1415, 2019.
- F. J. Siepel, B. Maris, M. K. Welleweerd, V. Groenhuis, P. Fiorini, and S. Stramigioli, “Needle and biopsy robots: a review,” Curr Robot Rep, vol. 2, no. 1, pp. 73–84, 2021.
- Y. Wang and H. Li, “Penetration detection with intention recognition for cooperatively controlled robotic needle insertion,” Transactions of the Institute of Measurement and Control, vol. 44, no. 10, pp. 1979–1992, 2022.
- S. Franckenberg, T. Sieberth, T. Frauenfelder, M. J. Thali, and L. C. Ebert, “Semiautomated robotic, ct-guided needle placement for postmortem csf sampling – a novel application of the virtobot,” All Life, vol. 14, no. 1, pp. 75–79, 2021.
- M. Neidhardt, S. Gerlach, R. Mieling, M.-H. Laves, T. Weiß, M. Gromniak, A. Fitzek, D. Möbius, I. Kniep, A. Ron et al., “Robotic tissue sampling for safe post-mortem biopsy in infectious corpses,” IEEE transactions on medical robotics and bionics, vol. 4, no. 1, pp. 94–105, 2022.
- D. Yakar, M. G. Schouten, D. G. Bosboom, J. O. Barentsz, T. W. Scheenen, and J. J. Fütterer, “Feasibility of a pneumatically actuated mr-compatible robot for transrectal prostate biopsy guidance,” Radiology, vol. 260, no. 1, pp. 241–247, 2011.
- J. C. Vilanova, A. Pérez de Tudela, J. Puig, M. Hoogenboom, J. Barceló, M. Planas, S. Sala, and S. Thió-Henestrosa, “Robotic-assisted transrectal mri-guided biopsy. technical feasibility and role in the current diagnosis of prostate cancer: an initial single-center experience,” Abdominal radiology (New York), vol. 45, no. 12, pp. 4150–4159, 2020.
- J. J. Fütterer and J. O. Barentsz, “Mri-guided and robotic-assisted prostate biopsy,” Current opinion in urology, vol. 22, no. 4, pp. 316–319, 2012.
- B. Guiu, T. de Baère, G. Noel, and M. Ronot, “Feasibility, safety and accuracy of a ct-guided robotic assistance for percutaneous needle placement in a swine liver model,” Sci Rep, vol. 11, no. 1, p. 5218, 2021.
- J. Kettenbach, L. Kara, G. Toporek, M. Fuerst, and G. Kronreif, “A robotic needle-positioning and guidance system for ct-guided puncture: Ex vivo results,” Minimally invasive therapy & allied technologies : MITAT : official journal of the Society for Minimally Invasive Therapy, vol. 23, no. 5, pp. 271–278, 2014.
- S. Levy, S. N. Goldberg, I. Roth, M. Shochat, J. Sosna, I. Leichter, and S. Flacke, “Clinical evaluation of a robotic system for precise ct-guided percutaneous procedures,” Abdominal radiology (New York), 2021.
- R. M. Martinez, W. Ptacek, W. Schweitzer, G. Kronreif, M. Fürst, M. J. Thali, and L. C. Ebert, “Ct-guided, minimally invasive, postmortem needle biopsy using the b-rob ii needle-positioning robot,” Journal of forensic sciences, vol. 59, no. 2, pp. 517–521, 2014.
- E. Abdi, D. Kulic, and E. Croft, “Haptics in teleoperated medical interventions: Force measurement, haptic interfaces and their influence on user’s performance,” IEEE transactions on bio-medical engineering, vol. 67, no. 12, pp. 3438–3451, 2020.
- M. Aggravi, D. A. Estima, A. Krupa, S. Misra, and C. Pacchierotti, “Haptic teleoperation of flexible needles combining 3d ultrasound guidance and needle tip force feedback,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4859–4866, 2021.
- Y. Tai, K. Qian, X. Huang, J. Zhang, M. A. Jan, and Z. Yu, “Intelligent intraoperative haptic-ar navigation for covid-19 lung biopsy using deep hybrid model,” IEEE Transactions on Industrial Informatics, vol. 17, no. 9, pp. 6519–6527, 2021.
- S. Elayaperumal, J. H. Bae, B. L. Daniel, and M. R. Cutkosky, “Detection of membrane puncture with haptic feedback using a tip-force sensing needle,” in IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2014, pp. 3975–3981.
- E. Mendoza and J. P. Whitney, “A testbed for haptic and magnetic resonance imaging-guided percutaneous needle biopsy,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3177–3183, 2019.
- M. Wartenberg, J. Schornak, K. Gandomi, P. Carvalho, C. Nycz, N. Patel, I. Iordachita, C. Tempany, N. Hata, J. Tokuda, and G. S. Fischer, “Closed-loop active compensation for needle deflection and target shift during cooperatively controlled robotic needle insertion,” Annals of Biomedical Engineering, vol. 46, no. 10, pp. 1582–1594, 2018.
- P. Baksic, H. Courtecuisse, and B. Bayle, “Shared control strategy for needle insertion into deformable tissue using inverse finite element simulation,” in 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021, pp. 12 442–12 448.
- A. K. Han, J. H. Bae, K. C. Gregoriou, C. J. Ploch, R. E. Goldman, G. H. Glover, B. L. Daniel, and M. R. Cutkosky, “Mr-compatible haptic display of membrane puncture in robot-assisted needle procedures,” IEEE Transactions on Haptics, vol. 11, no. 3, pp. 443–454, 2018.
- D. De Lorenzo, Y. Koseki, E. De Momi, K. Chinzei, and A. M. Okamura, “Coaxial needle insertion assistant with enhanced force feedback,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 2, pp. 379–389, 2012.
- D. Uzun, O. Ulgen, and O. Kocaturk, “Optical force sensor with enhanced resolution for mri guided biopsy,” IEEE Sensors Journal, vol. 20, no. 16, pp. 9202–9208, 2020.
- S. Beekmans, T. Lembrechts, J. van den Dobbelsteen, and D. van Gerwen, “Fiber-optic fabry-pérot interferometers for axial force sensing on the tip of a needle,” Sensors (Basel, Switzerland), vol. 17, no. 1, 2016.
- H. Su, M. Zervas, G. A. Cole, C. Furlong, and G. S. Fischer, “Real-time mri-guided needle placement robot with integrated fiber optic force sensing,” in 2011 IEEE International Conference on Robotics and Automation. IEEE, 2011, pp. 1583–1588.
- N. Gessert, T. Priegnitz, T. Saathoff, S.-T. Antoni, D. Meyer, M. F. Hamann, K.-P. Jünemann, C. Otte, and A. Schlaefer, “Spatio-temporal deep learning models for tip force estimation during needle insertion,” International journal of computer assisted radiology and surgery, vol. 14, no. 9, pp. 1485–1493, 2019.
- M. Ourak, J. Smits, L. Esteveny, G. Borghesan, A. Gijbels, L. Schoevaerdts, Y. Douven, J. Scholtes, E. Lankenau, T. Eixmann, H. Schulz-Hildebrandt, G. Hüttmann, M. Kozlovszky, G. Kronreif, K. Willekens, P. Stalmans, K. Faridpooya, M. Cereda, A. Giani, G. Staurenghi, D. Reynaerts, and E. B. Vander Poorten, “Combined oct distance and fbg force sensing cannulation needle for retinal vein cannulation: in vivo animal validation,” International journal of computer assisted radiology and surgery, vol. 14, no. 2, pp. 301–309, 2019.
- S. Gerlach, M. Neidhardt, T. Weiß, M.-H. Laves, C. Stapper, M. Gromniak, I. Kniep, D. Möbius, A. Heinemann, B. Ondruschka et al., “Needle insertion planning for obstacle avoidance in robotic biopsy,” Current Directions in Biomedical Engineering, vol. 7, no. 2, pp. 779–782, 2021.
- M. Neidhardt, S. Gerlach, M.-H. Laves, S. Latus, C. Stapper, M. Gromniak, and A. Schlaefer, “Collaborative robot assisted smart needle placement,” Current Directions in Biomedical Engineering, vol. 7, no. 2, pp. 472–475, 2021.
- S. Latus, J. Sprenger, M. Neidhardt, J. Schädler, A. Ron, A. Fitzek, M. Schlüter, P. Breitfeld, A. Heinemann, K. Püschel et al., “Rupture detection during needle insertion using complex oct data and cnns,” IEEE Transactions on Biomedical Engineering, vol. 68, no. 10, pp. 3059–3067, 2021.
- R. Mieling, C. Stapper, S. Gerlach, M. Neidhardt, S. Latus, M. Gromniak, P. Breitfeld, and A. Schlaefer, “Proximity-based haptic feedback for collaborative robotic needle insertion,” in International Conference on Human Haptic Sensing and Touch Enabled Computer Applications. Springer, 2022, pp. 301–309.
- D. Halstuch, J. Baniel, D. Lifshitz, S. Sela, Y. Ber, and D. Margel, “Assessment of needle tip deflection during transrectal guided prostate biopsy: Implications for targeted biopsies,” Journal of endourology, vol. 32, no. 3, pp. 252–256, 2018.
- C. Yang, Y. Xie, S. Liu, and D. Sun, “Force modeling, identification, and feedback control of robot-assisted needle insertion: A survey of the literature,” Sensors (Basel, Switzerland), vol. 18, no. 2, 2018.
- A. Muthigi, A. K. George, A. Sidana, M. Kongnyuy, R. Simon, V. Moreno, M. J. Merino, P. L. Choyke, B. Turkbey, B. J. Wood, and P. A. Pinto, “Missing the mark: Prostate cancer upgrading by systematic biopsy over magnetic resonance imaging/transrectal ultrasound fusion biopsy,” The Journal of urology, vol. 197, no. 2, pp. 327–334, 2017.
- U. Fehrenbach, R. Thiel, P.-D. Bady, T. A. Auer, A. Kahl, D. Geisel, E. Lopez Hänninen, R. Öllinger, J. Pratschke, B. Gebauer et al., “Ct fluoroscopy-guided pancreas transplant biopsies: a retrospective evaluation of predictors of complications and success rates,” Transplant International, vol. 34, no. 5, pp. 855–864, 2021.
- A. Syed, O. Babich, B. Rao, S. Singh, N. Carleton, A. Gulati, A. Kulkarni, M. Garg, K. Farah, G. Kochhar, S. Morrissey, M. Mitre, A. Kulkarni, M. Dhawan, J. F. Silverman, M. Pharaon, and S. Thakkar, “Endoscopic ultrasound guided fine-needle aspiration vs core needle biopsy for solid pancreatic lesions: Comparison of diagnostic accuracy and procedural efficiency,” Diagnostic Cytopathology, vol. 47, no. 11, pp. 1138–1144, 2019.
- G. Schreiber, A. Stemmer, and R. Bischoff, “The fast research interface for the kuka lightweight robot,” in IEEE workshop on innovative robot control architectures for demanding (Research) applications how to modify and enhance commercial controllers (ICRA 2010). Citeseer, 2010, pp. 15–21.
- J. Roy and L. Whitcomb, “Adaptive force control of position/velocity controlled robots: theory and experiment,” IEEE Transactions on Robotics and Automation, vol. 18, no. 2, pp. 121–137, 2002.
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
- D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
- M. Mahvash and P. E. Dupont, “Mechanics of dynamic needle insertion into a biological material,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 4, pp. 934–943, 2009.
- A. M. Okamura, C. Simone, and M. D. O’leary, “Force modeling for needle insertion into soft tissue,” IEEE transactions on biomedical engineering, vol. 51, no. 10, pp. 1707–1716, 2004.
- A. K. Han, J. H. Bae, K. C. Gregoriou, C. J. Ploch, R. E. Goldman, G. H. Glover, B. L. Daniel, and M. R. Cutkosky, “Mr-compatible haptic display of membrane puncture in robot-assisted needle procedures,” IEEE transactions on haptics, vol. 11, no. 3, pp. 443–454, 2018.
- S. Malek, S. Potdar, J. Martin, M. Tublin, R. Shapiro, and J. Fung, “Percutaneous ultrasound-guided pancreas allograft biopsy: a single-center experience,” in Transplantation proceedings, vol. 37, no. 10. Elsevier, 2005, pp. 4436–4437.