Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Adaptive isogeometric phase-field modeling of the Cahn-Hilliard equation: Suitably graded hierarchical refinement and coarsening on multi-patch geometries (2306.07112v1)

Published 12 Jun 2023 in math.NA and cs.NA

Abstract: We present an adaptive scheme for isogeometric phase-field modeling, to perform suitably graded hierarchical refinement and coarsening on both single- and multi-patch geometries by considering truncated hierarchical spline constructions which ensures $C1$ continuity between patches. We apply the proposed algorithms to the Cahn-Hilliard equation, describing the time-evolving phase separation processes of immiscible fluids. We first verify the accuracy of the hierarchical spline scheme by comparing two classical indicators usually considered in phase-field modeling, for then demonstrating the effectiveness of the grading strategy in terms of accuracy per degree of freedom. A selection of numerical examples confirms the performance of the proposed scheme to simulate standard modes of phase separation using adaptive isogeometric analysis with smooth THB-spline constructions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.