Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Reducing Barriers to Self-Supervised Learning: HuBERT Pre-training with Academic Compute (2306.06672v1)

Published 11 Jun 2023 in cs.CL, cs.AI, and eess.AS

Abstract: Self-supervised learning (SSL) has led to great strides in speech processing. However, the resources needed to train these models has become prohibitively large as they continue to scale. Currently, only a few groups with substantial resources are capable of creating SSL models, which harms reproducibility. In this work, we optimize HuBERT SSL to fit in academic constraints. We reproduce HuBERT independently from the original implementation, with no performance loss. Our code and training optimizations make SSL feasible with only 8 GPUs, instead of the 32 used in the original work. We also explore a semi-supervised route, using an ASR model to skip the first pre-training iteration. Within one iteration of pre-training, our models improve over HuBERT on several tasks. Furthermore, our HuBERT Large variant requires only 8 GPUs, achieving similar performance to the original trained on 128. As our contribution to the community, all models, configurations, and code are made open-source in ESPnet.

Citations (24)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.