Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

PVPUFormer: Probabilistic Visual Prompt Unified Transformer for Interactive Image Segmentation (2306.06656v2)

Published 11 Jun 2023 in cs.CV, cs.RO, and eess.IV

Abstract: Integration of diverse visual prompts like clicks, scribbles, and boxes in interactive image segmentation significantly facilitates users' interaction as well as improves interaction efficiency. However, existing studies primarily encode the position or pixel regions of prompts without considering the contextual areas around them, resulting in insufficient prompt feedback, which is not conducive to performance acceleration. To tackle this problem, this paper proposes a simple yet effective Probabilistic Visual Prompt Unified Transformer (PVPUFormer) for interactive image segmentation, which allows users to flexibly input diverse visual prompts with the probabilistic prompt encoding and feature post-processing to excavate sufficient and robust prompt features for performance boosting. Specifically, we first propose a Probabilistic Prompt-unified Encoder (PPuE) to generate a unified one-dimensional vector by exploring both prompt and non-prompt contextual information, offering richer feedback cues to accelerate performance improvement. On this basis, we further present a Prompt-to-Pixel Contrastive (P$2$C) loss to accurately align both prompt and pixel features, bridging the representation gap between them to offer consistent feature representations for mask prediction. Moreover, our approach designs a Dual-cross Merging Attention (DMA) module to implement bidirectional feature interaction between image and prompt features, generating notable features for performance improvement. A comprehensive variety of experiments on several challenging datasets demonstrates that the proposed components achieve consistent improvements, yielding state-of-the-art interactive segmentation performance. Our code is available at https://github.com/XuZhang1211/PVPUFormer.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.