Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Provably Efficient Adversarial Imitation Learning with Unknown Transitions (2306.06563v1)

Published 11 Jun 2023 in cs.LG

Abstract: Imitation learning (IL) has proven to be an effective method for learning good policies from expert demonstrations. Adversarial imitation learning (AIL), a subset of IL methods, is particularly promising, but its theoretical foundation in the presence of unknown transitions has yet to be fully developed. This paper explores the theoretical underpinnings of AIL in this context, where the stochastic and uncertain nature of environment transitions presents a challenge. We examine the expert sample complexity and interaction complexity required to recover good policies. To this end, we establish a framework connecting reward-free exploration and AIL, and propose an algorithm, MB-TAIL, that achieves the minimax optimal expert sample complexity of $\widetilde{O} (H{3/2} |S|/\varepsilon)$ and interaction complexity of $\widetilde{O} (H{3} |S|2 |A|/\varepsilon2)$. Here, $H$ represents the planning horizon, $|S|$ is the state space size, $|A|$ is the action space size, and $\varepsilon$ is the desired imitation gap. MB-TAIL is the first algorithm to achieve this level of expert sample complexity in the unknown transition setting and improves upon the interaction complexity of the best-known algorithm, OAL, by $O(H)$. Additionally, we demonstrate the generalization ability of MB-TAIL by extending it to the function approximation setting and proving that it can achieve expert sample and interaction complexity independent of $|S|$

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.