Papers
Topics
Authors
Recent
2000 character limit reached

Annotation-Inspired Implicit Discourse Relation Classification with Auxiliary Discourse Connective Generation (2306.06480v1)

Published 10 Jun 2023 in cs.CL

Abstract: Implicit discourse relation classification is a challenging task due to the absence of discourse connectives. To overcome this issue, we design an end-to-end neural model to explicitly generate discourse connectives for the task, inspired by the annotation process of PDTB. Specifically, our model jointly learns to generate discourse connectives between arguments and predict discourse relations based on the arguments and the generated connectives. To prevent our relation classifier from being misled by poor connectives generated at the early stage of training while alleviating the discrepancy between training and inference, we adopt Scheduled Sampling to the joint learning. We evaluate our method on three benchmarks, PDTB 2.0, PDTB 3.0, and PCC. Results show that our joint model significantly outperforms various baselines on three datasets, demonstrating its superiority for the task.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.