Papers
Topics
Authors
Recent
2000 character limit reached

Differentially private sliced inverse regression in the federated paradigm (2306.06324v2)

Published 10 Jun 2023 in stat.ME and stat.ML

Abstract: Sliced inverse regression (SIR), which includes linear discriminant analysis (LDA) as a special case, is a popular and powerful dimension reduction tool. In this article, we extend SIR to address the challenges of decentralized data, prioritizing privacy and communication efficiency. Our approach, named as federated sliced inverse regression (FSIR), facilitates collaborative estimation of the sufficient dimension reduction subspace among multiple clients, solely sharing local estimates to protect sensitive datasets from exposure. To guard against potential adversary attacks, FSIR further employs diverse perturbation strategies, including a novel vectorized Gaussian mechanism that guarantees differential privacy at a low cost of statistical accuracy. Additionally, FSIR naturally incorporates a collaborative variable screening step, enabling effective handling of high-dimensional client data. Theoretical properties of FSIR are established for both low-dimensional and high-dimensional settings, supported by extensive numerical experiments and real data analysis.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.