Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

BioGAN: An unpaired GAN-based image to image translation model for microbiological images (2306.06217v1)

Published 9 Jun 2023 in eess.IV and cs.CV

Abstract: A diversified dataset is crucial for training a well-generalized supervised computer vision algorithm. However, in the field of microbiology, generation and annotation of a diverse dataset including field-taken images are time consuming, costly, and in some cases impossible. Image to image translation frameworks allow us to diversify the dataset by transferring images from one domain to another. However, most existing image translation techniques require a paired dataset (original image and its corresponding image in the target domain), which poses a significant challenge in collecting such datasets. In addition, the application of these image translation frameworks in microbiology is rarely discussed. In this study, we aim to develop an unpaired GAN-based (Generative Adversarial Network) image to image translation model for microbiological images, and study how it can improve generalization ability of object detection models. In this paper, we present an unpaired and unsupervised image translation model to translate laboratory-taken microbiological images to field images, building upon the recent advances in GAN networks and Perceptual loss function. We propose a novel design for a GAN model, BioGAN, by utilizing Adversarial and Perceptual loss in order to transform high level features of laboratory-taken images into field images, while keeping their spatial features. The contribution of Adversarial and Perceptual loss in the generation of realistic field images were studied. We used the synthetic field images, generated by BioGAN, to train an object-detection framework, and compared the results with those of an object-detection framework trained with laboratory images; this resulted in up to 68.1% and 75.3% improvement on F1-score and mAP, respectively. Codes is publicly available at https://github.com/Kahroba2000/BioGAN.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube