Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PoET: A generative model of protein families as sequences-of-sequences (2306.06156v3)

Published 9 Jun 2023 in q-bio.QM and cs.LG

Abstract: Generative protein LLMs are a natural way to design new proteins with desired functions. However, current models are either difficult to direct to produce a protein from a specific family of interest, or must be trained on a large multiple sequence alignment (MSA) from the specific family of interest, making them unable to benefit from transfer learning across families. To address this, we propose $\textbf{P}$r$\textbf{o}$tein $\textbf{E}$volutionary $\textbf{T}$ransformer (PoET), an autoregressive generative model of whole protein families that learns to generate sets of related proteins as sequences-of-sequences across tens of millions of natural protein sequence clusters. PoET can be used as a retrieval-augmented LLM to generate and score arbitrary modifications conditioned on any protein family of interest, and can extrapolate from short context lengths to generalize well even for small families. This is enabled by a unique Transformer layer; we model tokens sequentially within sequences while attending between sequences order invariantly, allowing PoET to scale to context lengths beyond those used during training. In extensive experiments on deep mutational scanning datasets, we show that PoET outperforms existing protein LLMs and evolutionary sequence models for variant function prediction across proteins of all MSA depths. We also demonstrate PoET's ability to controllably generate new protein sequences.

Citations (22)

Summary

We haven't generated a summary for this paper yet.