Papers
Topics
Authors
Recent
2000 character limit reached

Neural Algorithmic Reasoning for Combinatorial Optimisation

Published 18 May 2023 in cs.NE and cs.LG | (2306.06064v5)

Abstract: Solving NP-hard/complete combinatorial problems with neural networks is a challenging research area that aims to surpass classical approximate algorithms. The long-term objective is to outperform hand-designed heuristics for NP-hard/complete problems by learning to generate superior solutions solely from training data. Current neural-based methods for solving CO problems often overlook the inherent "algorithmic" nature of the problems. In contrast, heuristics designed for CO problems, e.g. TSP, frequently leverage well-established algorithms, such as those for finding the minimum spanning tree. In this paper, we propose leveraging recent advancements in neural algorithmic reasoning to improve the learning of CO problems. Specifically, we suggest pre-training our neural model on relevant algorithms before training it on CO instances. Our results demonstrate that by using this learning setup, we achieve superior performance compared to non-algorithmically informed deep learning models.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.