Papers
Topics
Authors
Recent
2000 character limit reached

How Does Fine-Tuning Impact Out-of-Distribution Detection for Vision-Language Models? (2306.06048v3)

Published 9 Jun 2023 in cs.CV, cs.CY, and cs.LG

Abstract: Recent large vision-LLMs such as CLIP have shown remarkable out-of-distribution (OOD) detection and generalization performance. However, their zero-shot in-distribution (ID) accuracy is often limited for downstream datasets. Recent CLIP-based fine-tuning methods such as prompt learning have demonstrated significant improvements in ID classification and OOD generalization where OOD labels are available. Nonetheless, it remains unclear whether the model is reliable to semantic shifts without OOD labels. In this paper, we aim to bridge the gap and present a comprehensive study to understand how fine-tuning impact OOD detection for few-shot downstream tasks. By framing OOD detection as multi-modal concept matching, we establish a connection between fine-tuning methods and various OOD scores. Our results suggest that a proper choice of OOD scores is essential for CLIP-based fine-tuning. In particular, the maximum concept matching (MCM) score provides a promising solution consistently. We also show that prompt learning demonstrates the state-of-the-art OOD detection performance over the zero-shot counterpart.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.