Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Efficient Encoder-Decoder and Dual-Path Conformer for Comprehensive Feature Learning in Speech Enhancement (2306.05861v1)

Published 9 Jun 2023 in eess.AS, cs.CL, and cs.SD

Abstract: Current speech enhancement (SE) research has largely neglected channel attention and spatial attention, and encoder-decoder architecture-based networks have not adequately considered how to provide efficient inputs to the intermediate enhancement layer. To address these issues, this paper proposes a time-frequency (T-F) domain SE network (DPCFCS-Net) that incorporates improved densely connected blocks, dual-path modules, convolution-augmented transformers (conformers), channel attention, and spatial attention. Compared with previous models, our proposed model has a more efficient encoder-decoder and can learn comprehensive features. Experimental results on the VCTK+DEMAND dataset demonstrate that our method outperforms existing techniques in SE performance. Furthermore, the improved densely connected block and two dimensions attention module developed in this work are highly adaptable and easily integrated into existing networks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.