Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Efficient Encoder-Decoder and Dual-Path Conformer for Comprehensive Feature Learning in Speech Enhancement (2306.05861v1)

Published 9 Jun 2023 in eess.AS, cs.CL, and cs.SD

Abstract: Current speech enhancement (SE) research has largely neglected channel attention and spatial attention, and encoder-decoder architecture-based networks have not adequately considered how to provide efficient inputs to the intermediate enhancement layer. To address these issues, this paper proposes a time-frequency (T-F) domain SE network (DPCFCS-Net) that incorporates improved densely connected blocks, dual-path modules, convolution-augmented transformers (conformers), channel attention, and spatial attention. Compared with previous models, our proposed model has a more efficient encoder-decoder and can learn comprehensive features. Experimental results on the VCTK+DEMAND dataset demonstrate that our method outperforms existing techniques in SE performance. Furthermore, the improved densely connected block and two dimensions attention module developed in this work are highly adaptable and easily integrated into existing networks.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube