Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Adaptive Multi-Armed Bandit Learning for Task Offloading in Edge Computing (2306.05856v1)

Published 9 Jun 2023 in cs.NI and eess.SP

Abstract: The widespread adoption of edge computing has emerged as a prominent trend for alleviating task processing delays and reducing energy consumption. However, the dynamic nature of network conditions and the varying computation capacities of edge servers (ESs) can introduce disparities between computation loads and available computing resources in edge computing networks, potentially leading to inadequate service quality. To address this challenge, this paper investigates a practical scenario characterized by dynamic task offloading. Initially, we examine traditional Multi-armed Bandit (MAB) algorithms, namely the $\varepsilon$-greedy algorithm and the UCB1-based algorithm. However, both algorithms exhibit certain weaknesses in effectively addressing the tidal data traffic patterns. Consequently, based on MAB, we propose an adaptive task offloading algorithm (ATOA) that overcomes these limitations. By conducting extensive simulations, we demonstrate the superiority of our ATOA solution in reducing task processing latency compared to conventional MAB methods. This substantiates the effectiveness of our approach in enhancing the performance of edge computing networks and improving overall service quality.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube