Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Emotion Detection from EEG using Transfer Learning (2306.05680v1)

Published 9 Jun 2023 in eess.SP and cs.LG

Abstract: The detection of emotions using an Electroencephalogram (EEG) is a crucial area in brain-computer interfaces and has valuable applications in fields such as rehabilitation and medicine. In this study, we employed transfer learning to overcome the challenge of limited data availability in EEG-based emotion detection. The base model used in this study was Resnet50. Additionally, we employed a novel feature combination in EEG-based emotion detection. The input to the model was in the form of an image matrix, which comprised Mean Phase Coherence (MPC) and Magnitude Squared Coherence (MSC) in the upper-triangular and lower-triangular matrices, respectively. We further improved the technique by incorporating features obtained from the Differential Entropy (DE) into the diagonal, which previously held little to no useful information for classifying emotions. The dataset used in this study, SEED EEG (62 channel EEG), comprises three classes (Positive, Neutral, and Negative). We calculated both subject-independent and subject-dependent accuracy. The subject-dependent accuracy was obtained using a 10-fold cross-validation method and was 93.1%, while the subject-independent classification was performed by employing the leave-one-subject-out (LOSO) strategy. The accuracy obtained in subject-independent classification was 71.6%. Both of these accuracies are at least twice better than the chance accuracy of classifying 3 classes. The study found the use of MSC and MPC in EEG-based emotion detection promising for emotion classification. The future scope of this work includes the use of data augmentation techniques, enhanced classifiers, and better features for emotion classification.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube