Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Emotion and Sentiment Guided Paraphrasing (2306.05556v1)

Published 8 Jun 2023 in cs.CL and cs.LG

Abstract: Paraphrase generation, a.k.a. paraphrasing, is a common and important task in natural language processing. Emotional paraphrasing, which changes the emotion embodied in a piece of text while preserving its meaning, has many potential applications, including moderating online dialogues and preventing cyberbullying. We introduce a new task of fine-grained emotional paraphrasing along emotion gradients, that is, altering the emotional intensities of the paraphrases in fine-grained settings following smooth variations in affective dimensions while preserving the meaning of the original text. We reconstruct several widely used paraphrasing datasets by augmenting the input and target texts with their fine-grained emotion labels. Then, we propose a framework for emotion and sentiment guided paraphrasing by leveraging pre-trained LLMs for conditioned text generation. Extensive evaluation of the fine-tuned models suggests that including fine-grained emotion labels in the paraphrase task significantly improves the likelihood of obtaining high-quality paraphrases that reflect the desired emotions while achieving consistently better scores in paraphrase metrics such as BLEU, ROUGE, and METEOR.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube