Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Factorized Contrastive Learning: Going Beyond Multi-view Redundancy (2306.05268v2)

Published 8 Jun 2023 in cs.LG, cs.AI, cs.CL, cs.CV, and cs.MM

Abstract: In a wide range of multimodal tasks, contrastive learning has become a particularly appealing approach since it can successfully learn representations from abundant unlabeled data with only pairing information (e.g., image-caption or video-audio pairs). Underpinning these approaches is the assumption of multi-view redundancy - that shared information between modalities is necessary and sufficient for downstream tasks. However, in many real-world settings, task-relevant information is also contained in modality-unique regions: information that is only present in one modality but still relevant to the task. How can we learn self-supervised multimodal representations to capture both shared and unique information relevant to downstream tasks? This paper proposes FactorCL, a new multimodal representation learning method to go beyond multi-view redundancy. FactorCL is built from three new contributions: (1) factorizing task-relevant information into shared and unique representations, (2) capturing task-relevant information via maximizing MI lower bounds and removing task-irrelevant information via minimizing MI upper bounds, and (3) multimodal data augmentations to approximate task relevance without labels. On large-scale real-world datasets, FactorCL captures both shared and unique information and achieves state-of-the-art results on six benchmarks

Citations (34)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube