Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 128 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Stratification of uncertainties recalibrated by isotonic regression and its impact on calibration error statistics (2306.05180v1)

Published 8 Jun 2023 in stat.ME, physics.chem-ph, physics.data-an, and stat.ML

Abstract: Abstract Post hoc recalibration of prediction uncertainties of machine learning regression problems by isotonic regression might present a problem for bin-based calibration error statistics (e.g. ENCE). Isotonic regression often produces stratified uncertainties, i.e. subsets of uncertainties with identical numerical values. Partitioning of the resulting data into equal-sized bins introduces an aleatoric component to the estimation of bin-based calibration statistics. The partitioning of stratified data into bins depends on the order of the data, which is typically an uncontrolled property of calibration test/validation sets. The tie-braking method of the ordering algorithm used for binning might also introduce an aleatoric component. I show on an example how this might significantly affect the calibration diagnostics.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.