Papers
Topics
Authors
Recent
2000 character limit reached

Stratification of uncertainties recalibrated by isotonic regression and its impact on calibration error statistics (2306.05180v1)

Published 8 Jun 2023 in stat.ME, physics.chem-ph, physics.data-an, and stat.ML

Abstract: Abstract Post hoc recalibration of prediction uncertainties of machine learning regression problems by isotonic regression might present a problem for bin-based calibration error statistics (e.g. ENCE). Isotonic regression often produces stratified uncertainties, i.e. subsets of uncertainties with identical numerical values. Partitioning of the resulting data into equal-sized bins introduces an aleatoric component to the estimation of bin-based calibration statistics. The partitioning of stratified data into bins depends on the order of the data, which is typically an uncontrolled property of calibration test/validation sets. The tie-braking method of the ordering algorithm used for binning might also introduce an aleatoric component. I show on an example how this might significantly affect the calibration diagnostics.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.