Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

G$^2$uardFL: Safeguarding Federated Learning Against Backdoor Attacks through Attributed Client Graph Clustering (2306.04984v2)

Published 8 Jun 2023 in cs.CR and cs.LG

Abstract: Federated Learning (FL) offers collaborative model training without data sharing but is vulnerable to backdoor attacks, where poisoned model weights lead to compromised system integrity. Existing countermeasures, primarily based on anomaly detection, are prone to erroneous rejections of normal weights while accepting poisoned ones, largely due to shortcomings in quantifying similarities among client models. Furthermore, other defenses demonstrate effectiveness only when dealing with a limited number of malicious clients, typically fewer than 10%. To alleviate these vulnerabilities, we present G$2$uardFL, a protective framework that reinterprets the identification of malicious clients as an attributed graph clustering problem, thus safeguarding FL systems. Specifically, this framework employs a client graph clustering approach to identify malicious clients and integrates an adaptive mechanism to amplify the discrepancy between the aggregated model and the poisoned ones, effectively eliminating embedded backdoors. We also conduct a theoretical analysis of convergence to confirm that G$2$uardFL does not affect the convergence of FL systems. Through empirical evaluation, comparing G$2$uardFL with cutting-edge defenses, such as FLAME (USENIX Security 2022) [28] and DeepSight (NDSS 2022) [36], against various backdoor attacks including 3DFed (SP 2023) [20], our results demonstrate its significant effectiveness in mitigating backdoor attacks while having a negligible impact on the aggregated model's performance on benign samples (i.e., the primary task performance). For instance, in an FL system with 25% malicious clients, G$2$uardFL reduces the attack success rate to 10.61%, while maintaining a primary task performance of 73.05% on the CIFAR-10 dataset. This surpasses the performance of the best-performing baseline, which merely achieves a primary task performance of 19.54%.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.