Papers
Topics
Authors
Recent
Search
2000 character limit reached

Understanding Masked Autoencoders via Hierarchical Latent Variable Models

Published 8 Jun 2023 in cs.LG and cs.CV | (2306.04898v1)

Abstract: Masked autoencoder (MAE), a simple and effective self-supervised learning framework based on the reconstruction of masked image regions, has recently achieved prominent success in a variety of vision tasks. Despite the emergence of intriguing empirical observations on MAE, a theoretically principled understanding is still lacking. In this work, we formally characterize and justify existing empirical insights and provide theoretical guarantees of MAE. We formulate the underlying data-generating process as a hierarchical latent variable model and show that under reasonable assumptions, MAE provably identifies a set of latent variables in the hierarchical model, explaining why MAE can extract high-level information from pixels. Further, we show how key hyperparameters in MAE (the masking ratio and the patch size) determine which true latent variables to be recovered, therefore influencing the level of semantic information in the representation. Specifically, extremely large or small masking ratios inevitably lead to low-level representations. Our theory offers coherent explanations of existing empirical observations and provides insights for potential empirical improvements and fundamental limitations of the masking-reconstruction paradigm. We conduct extensive experiments to validate our theoretical insights.

Citations (19)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.