Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Tâtonnement in Homothetic Fisher Markets (2306.04890v3)

Published 8 Jun 2023 in cs.GT and econ.TH

Abstract: A prevalent theme in the economics and computation literature is to identify natural price-adjustment processes by which sellers and buyers in a market can discover equilibrium prices. An example of such a process is t^atonnement, an auction-like algorithm first proposed in 1874 by French economist Walras in which sellers adjust prices based on the Marshallian demands of buyers. A dual concept in consumer theory is a buyer's Hicksian demand. In this paper, we identify the maximum of the absolute value of the elasticity of the Hicksian demand, as an economic parameter sufficient to capture and explain a range of convergent and non-convergent t^atonnement behaviors in a broad class of markets. In particular, we prove the convergence of t^atonnement at a rate of $O((1+\varepsilon2)/T)$, in homothetic Fisher markets with bounded price elasticity of Hicksian demand, i.e., Fisher markets in which consumers have preferences represented by homogeneous utility functions and the price elasticity of their Hicksian demand is bounded, where $\varepsilon \geq 0$ is the maximum absolute value of the price elasticity of Hicksian demand across all buyers. Our result not only generalizes known convergence results for CES Fisher markets, but extends them to mixed nested CES markets and Fisher markets with continuous, possibly non-concave, homogeneous utility functions. Our convergence rate covers the full spectrum of nested CES utilities, including Leontief and linear utilities, unifying previously existing disparate convergence and non-convergence results. In particular, for $\varepsilon = 0$, i.e., Leontief markets, we recover the best-known convergence rate of $O(1/T)$, and as $\varepsilon \to \infty$, e.g., linear Fisher markets, we obtain non-convergent behavior, as expected.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets