Sparse Linear Centroid-Encoder: A Convex Method for Feature Selection (2306.04824v2)
Abstract: We present a novel feature selection technique, Sparse Linear Centroid-Encoder (SLCE). The algorithm uses a linear transformation to reconstruct a point as its class centroid and, at the same time, uses the $\ell_1$-norm penalty to filter out unnecessary features from the input data. The original formulation of the optimization problem is nonconvex, but we propose a two-step approach, where each step is convex. In the first step, we solve the linear Centroid-Encoder, a convex optimization problem over a matrix $A$. In the second step, we only search for a sparse solution over a diagonal matrix $B$ while keeping $A$ fixed. Unlike other linear methods, e.g., Sparse Support Vector Machines and Lasso, Sparse Linear Centroid-Encoder uses a single model for multi-class data. We present an in-depth empirical analysis of the proposed model and show that it promotes sparsity on various data sets, including high-dimensional biological data. Our experimental results show that SLCE has a performance advantage over some state-of-the-art neural network-based feature selection techniques.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.