Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Absformer: Transformer-based Model for Unsupervised Multi-Document Abstractive Summarization (2306.04787v1)

Published 7 Jun 2023 in cs.CL and cs.LG

Abstract: Multi-document summarization (MDS) refers to the task of summarizing the text in multiple documents into a concise summary. The generated summary can save the time of reading many documents by providing the important content in the form of a few sentences. Abstractive MDS aims to generate a coherent and fluent summary for multiple documents using natural language generation techniques. In this paper, we consider the unsupervised abstractive MDS setting where there are only documents with no groundtruh summaries provided, and we propose Absformer, a new Transformer-based method for unsupervised abstractive summary generation. Our method consists of a first step where we pretrain a Transformer-based encoder using the masked language modeling (MLM) objective as the pretraining task in order to cluster the documents into semantically similar groups; and a second step where we train a Transformer-based decoder to generate abstractive summaries for the clusters of documents. To our knowledge, we are the first to successfully incorporate a Transformer-based model to solve the unsupervised abstractive MDS task. We evaluate our approach using three real-world datasets from different domains, and we demonstrate both substantial improvements in terms of evaluation metrics over state-of-the-art abstractive-based methods, and generalization to datasets from different domains.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.