Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Robust-DefReg: A Robust Deformable Point Cloud Registration Method based on Graph Convolutional Neural Networks (2306.04701v1)

Published 7 Jun 2023 in cs.CV and cs.LG

Abstract: Point cloud registration is a fundamental problem in computer vision that aims to estimate the transformation between corresponding sets of points. Non-rigid registration, in particular, involves addressing challenges including various levels of deformation, noise, outliers, and data incompleteness. This paper introduces Robust-DefReg, a robust non-rigid point cloud registration method based on graph convolutional networks (GCNNs). Robust-DefReg is a coarse-to-fine registration approach within an end-to-end pipeline, leveraging the advantages of both coarse and fine methods. The method learns global features to find correspondences between source and target point clouds, to enable appropriate initial alignment, and subsequently fine registration. The simultaneous achievement of high accuracy and robustness across all challenges is reported less frequently in existing studies, making it a key objective of the Robust-DefReg method. The proposed method achieves high accuracy in large deformations while maintaining computational efficiency. This method possesses three primary attributes: high accuracy, robustness to different challenges, and computational efficiency. The experimental results show that the proposed Robust-DefReg holds significant potential as a foundational architecture for future investigations in non-rigid point cloud registration. The source code of Robust-DefReg is available.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube