Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On training locally adaptive CP (2306.04648v1)

Published 5 Jun 2023 in cs.LG, cs.AI, and stat.ML

Abstract: We address the problem of making Conformal Prediction (CP) intervals locally adaptive. Most existing methods focus on approximating the object-conditional validity of the intervals by partitioning or re-weighting the calibration set. Our strategy is new and conceptually different. Instead of re-weighting the calibration data, we redefine the conformity measure through a trainable change of variables, $A \to \phi_X(A)$, that depends explicitly on the object attributes, $X$. Under certain conditions and if $\phi_X$ is monotonic in $A$ for any $X$, the transformations produce prediction intervals that are guaranteed to be marginally valid and have $X$-dependent sizes. We describe how to parameterize and train $\phi_X$ to maximize the interval efficiency. Contrary to other CP-aware training methods, the objective function is smooth and can be minimized through standard gradient methods without approximations.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube