Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On training locally adaptive CP (2306.04648v1)

Published 5 Jun 2023 in cs.LG, cs.AI, and stat.ML

Abstract: We address the problem of making Conformal Prediction (CP) intervals locally adaptive. Most existing methods focus on approximating the object-conditional validity of the intervals by partitioning or re-weighting the calibration set. Our strategy is new and conceptually different. Instead of re-weighting the calibration data, we redefine the conformity measure through a trainable change of variables, $A \to \phi_X(A)$, that depends explicitly on the object attributes, $X$. Under certain conditions and if $\phi_X$ is monotonic in $A$ for any $X$, the transformations produce prediction intervals that are guaranteed to be marginally valid and have $X$-dependent sizes. We describe how to parameterize and train $\phi_X$ to maximize the interval efficiency. Contrary to other CP-aware training methods, the objective function is smooth and can be minimized through standard gradient methods without approximations.

Citations (5)

Summary

We haven't generated a summary for this paper yet.