Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Two Word Test: A Semantic Benchmark for Large Language Models (2306.04610v1)

Published 7 Jun 2023 in cs.CL and cs.AI

Abstract: LLMs have shown remarkable abilities recently, including passing advanced professional exams and demanding benchmark tests. This performance has led many to suggest that they are close to achieving humanlike or 'true' understanding of language, and even AGI. Here, we provide a new open-source benchmark that can assess semantic abilities of LLMs using two-word phrases using a task that can be performed relatively easily by humans without advanced training. Combining multiple words into a single concept is a fundamental aspect of human language and intelligence. The test requires meaningfulness judgments of 1768 noun-noun combinations that have been rated as meaningful (e.g., baby boy) or not meaningful (e.g., goat sky). by 150 human raters. We provide versions of the task that probe meaningfulness ratings on a 0-4 scale as well as binary judgments. We conducted a series of experiments using the TWT on GPT-4, GPT-3.5, and Bard, with both versions. Results demonstrated that, compared to humans, all models perform poorly at rating meaningfulness of these phrases. GPT-3.5 and Bard are also unable to make binary discriminations between sensible and nonsense phrases as making sense. GPT-4 makes a substantial improvement in binary discrimination of combinatorial phrases but is still significantly worse than human performance. The TWT can be used to understand the limitations and weaknesses of current LLMs, and potentially improve them. The test also reminds us that caution is warranted in attributing 'true understanding' or AGI to LLMs. TWT is available at: https://github.com/NickRiccardi/two-word-test

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com