Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A low rank ODE for spectral clustering stability (2306.04596v1)

Published 7 Jun 2023 in math.NA and cs.NA

Abstract: Spectral clustering is a well-known technique which identifies $k$ clusters in an undirected graph with weight matrix $W\in\mathbb{R}{n\times n}$ by exploiting its graph Laplacian $L(W)$, whose eigenvalues $0=\lambda_1\leq \lambda_2 \leq \dots \leq \lambda_n$ and eigenvectors are related to the $k$ clusters. Since the computation of $\lambda_{k+1}$ and $\lambda_k$ affects the reliability of this method, the $k$-th spectral gap $\lambda_{k+1}-\lambda_k$ is often considered as a stability indicator. This difference can be seen as an unstructured distance between $L(W)$ and an arbitrary symmetric matrix $L_\star$ with vanishing $k$-th spectral gap. A more appropriate structured distance to ambiguity such that $L_\star$ represents the Laplacian of a graph has been proposed by Andreotti et al. (2021). Slightly differently, we consider the objective functional $ F(\Delta)=\lambda_{k+1}\left(L(W+\Delta)\right)-\lambda_k\left(L(W+\Delta)\right)$, where $\Delta$ is a perturbation such that $W+\Delta$ has non-negative entries and the same pattern of $W$. We look for an admissible perturbation $\Delta_\star$ of smallest Frobenius norm such that $F(\Delta_\star)=0$. In order to solve this optimization problem, we exploit its low rank underlying structure. We formulate a rank-4 symmetric matrix ODE whose stationary points are the optimizers sought. The integration of this equation benefits from the low rank structure with a moderate computational effort and memory requirement, as it is shown in some illustrative numerical examples.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.