Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Point Cloud Video Anomaly Detection Based on Point Spatio-Temporal Auto-Encoder (2306.04466v1)

Published 4 Jun 2023 in cs.CV and eess.SP

Abstract: Video anomaly detection has great potential in enhancing safety in the production and monitoring of crucial areas. Currently, most video anomaly detection methods are based on RGB modality, but its redundant semantic information may breach the privacy of residents or patients. The 3D data obtained by depth camera and LiDAR can accurately locate anomalous events in 3D space while preserving human posture and motion information. Identifying individuals through the point cloud is difficult due to its sparsity, which protects personal privacy. In this study, we propose Point Spatio-Temporal Auto-Encoder (PSTAE), an autoencoder framework that uses point cloud videos as input to detect anomalies in point cloud videos. We introduce PSTOp and PSTTransOp to maintain spatial geometric and temporal motion information in point cloud videos. To measure the reconstruction loss of the proposed autoencoder framework, we propose a reconstruction loss measurement strategy based on a shallow feature extractor. Experimental results on the TIMo dataset show that our method outperforms currently representative depth modality-based methods in terms of AUROC and has superior performance in detecting Medical Issue anomalies. These results suggest the potential of point cloud modality in video anomaly detection. Our method sets a new state-of-the-art (SOTA) on the TIMo dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Tengjiao He (1 paper)
  2. Wenguang Wang (7 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.