Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Referring Expression Comprehension Using Language Adaptive Inference (2306.04451v1)

Published 6 Jun 2023 in cs.CV

Abstract: Different from universal object detection, referring expression comprehension (REC) aims to locate specific objects referred to by natural language expressions. The expression provides high-level concepts of relevant visual and contextual patterns, which vary significantly with different expressions and account for only a few of those encoded in the REC model. This leads us to a question: do we really need the entire network with a fixed structure for various referring expressions? Ideally, given an expression, only expression-relevant components of the REC model are required. These components should be small in number as each expression only contains very few visual and contextual clues. This paper explores the adaptation between expressions and REC models for dynamic inference. Concretely, we propose a neat yet efficient framework named Language Adaptive Dynamic Subnets (LADS), which can extract language-adaptive subnets from the REC model conditioned on the referring expressions. By using the compact subnet, the inference can be more economical and efficient. Extensive experiments on RefCOCO, RefCOCO+, RefCOCOg, and Referit show that the proposed method achieves faster inference speed and higher accuracy against state-of-the-art approaches.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube