Papers
Topics
Authors
Recent
2000 character limit reached

Dual policy as self-model for planning (2306.04440v2)

Published 7 Jun 2023 in cs.AI and cs.LG

Abstract: Planning is a data efficient decision-making strategy where an agent selects candidate actions by exploring possible future states. To simulate future states when there is a high-dimensional action space, the knowledge of one's decision making strategy must be used to limit the number of actions to be explored. We refer to the model used to simulate one's decisions as the agent's self-model. While self-models are implicitly used widely in conjunction with world models to plan actions, it remains unclear how self-models should be designed. Inspired by current reinforcement learning approaches and neuroscience, we explore the benefits and limitations of using a distilled policy network as the self-model. In such dual-policy agents, a model-free policy and a distilled policy are used for model-free actions and planned actions, respectively. Our results on a ecologically relevant, parametric environment indicate that distilled policy network for self-model stabilizes training, has faster inference than using model-free policy, promotes better exploration, and could learn a comprehensive understanding of its own behaviors, at the cost of distilling a new network apart from the model-free policy.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.